
J Glob Optim (2009) 44:193–212
DOI 10.1007/s10898-008-9318-6

Hybrid spectral gradient method for the unconstrained
minimization problem

William La Cruz · Gilberto Noguera

Received: 12 June 2007 / Accepted: 4 June 2008 / Published online: 8 July 2008
© Springer Science+Business Media, LLC. 2008

Abstract We present a hybrid algorithm that combines a genetic algorithm with the
Barzilai–Borwein gradient method. Under specific assumptions the new method guaran-
tees the convergence to a stationary point of a continuously differentiable function, from
any arbitrary initial point. Our preliminary numerical results indicate that the new methodol-
ogy finds efficiently and frequently the global minimum, in comparison with the globalized
Barzilai–Borwein method and the genetic algorithm of the Toolbox of Genetic Algorithms
of MatLab.

Keywords Unconstrained minimization problem · Genetic algorithms · Gradient methods ·
Barzilai–Borwein method

Mathematics Subject Classifications (2000) 65K10 · 49M37 · 90C59

1 Introduction

We consider the unconstrained minimization problem

min
x∈Rn

f (x), (1)

where f : R
n → R is a continuously differentiable function defined on R

n .
Problem (1) is frequently solved using iterative methods (e.g., Newton’s method, Quasi-

Newton methods, gradient methods) that generate an approximate solution at each iteration.

W. La Cruz (B)
Departamento de Electrónica, Computación y Control, Facultad de Ingeniería, Universidad Central de
Venezuela, Caracas 1051-DF, Venezuela
e-mail: william.lacruz@ucv.ve

G. Noguera
Área de Matemática, Universidad Nacional Abierta, Caracas, Venezuela
e-mail: noguerag@ucv.ve

123

194 J Glob Optim (2009) 44:193–212

Another approach that can be used is the family of direct search methods (e.g., Nelder–Mead
method [51]).

The Barzilai–Borwein (BB) method [2] is a gradient method that uses a very special step
length. Concretely, the BB method for problem (1) is defined by

xk+1 = xk − 1

αk
∇ f (xk), (2)

where ∇ f (xk) is the gradient vector of f at xk and the scalar αk , called the spectral step
length, is given by

αk = sT
k−1 yk−1

sT
k−1sk−1

, (3)

where sk−1 = xk − xk−1 and yk−1 = ∇ f (xk) − ∇ f (xk−1).
When f is a strictly convex quadratic, Raydan [53] demonstrates that BB converges to the

solution of (1), and when f is an arbitrary function, Raydan [54] incorporates a globalization
strategy to BB that allows the convergence to a local minimum of f , starting from any initial
point x0. This way, Raydan [54] builds the Global Barzilai–Borwein (GBB) method (see
Raydan [54, p. 28]).

The structure of iteration (2) is very attractive, especially when one deals with large-scale
problems. Each iteration only needs the evaluation of ∇ f (xk) and some additional floating
point operations which are linear in terms of n. By its simplicity and easy implementation,
BB is an efficient method for large-scale minimization that has been satisfactorily used in
many applications [5,6,8,18,21,38–40,50,58]. Additional theoretical properties have been
recently studied [24–31,35,36].

There are variations of BB method for solving systems of nonlinear equations [45–47],
that have competed favorably with the Newton-Krylov schemes [3,16,17]. Also the projected
version of BB (Spectral Projected Gradient method [11–13]) has been intensively used in
applications of great interest [1,4,7,9,10,14,15,22,23,32,37,61,52,55–57,60].

On the other hand, Genetic Algorithms (GA) have been used for solving problem (1) con-
sidering an objective function that does not possess good properties as continuity, differentia-
bility, or the Lipschitz condition, among others [34,41,43,44,49]. According to Golberg [41]
the GAs are search algorithms based on the natural selection and the natural genetics. These
algorithms maintain and handle a population of solutions and carry out a strategy of survival
of the “best individual” in their search to obtain better solutions.

Therefore, problem (1) has been solved using iterative deterministic methods and also
heuristic methods. The iterative methods generally are used under certain differentiability
conditions and only guarantee the convergence to local minima. Otherwise, the heuristic
methods do not need differentiability and guarantee convergence to global minima, but
require a large number of function evaluations and a large CPU time.

The main objective of this work is to solve problem (1) combining the GAs with the BB
method. Under specific assumptions the new method guarantees the convergence to a sta-
tionary point of f from an initial point x0 ∈ R

n chosen arbitrarily. The new methodology can
be considered as a hybrid GA for optimization, but not in the traditional form. The difference
with our approach will be described below.

Traditionally a hybrid GA carries out first a certain number of generations and then an
iterative method (Newton’s method or Quasi-Newton, etc.), or another heuristic (simulated
annealing, etc.), is applied to refine the approximations. On the contrary in the proposed
method, the iterative algorithm is applied to guide the search of the GA, that is to say, every

123

J Glob Optim (2009) 44:193–212 195

time that BB generates an iterate xk ∈ R
n , the GA looks inside a certain region that contains

xk for some other point that improves the value of f (xk).
Our preliminary numerical results indicate that the new methodology finds efficiently and

quite frequently the global minimum, in comparison with the method of Global Barzilai–
Borwein and the GA of the Toolbox of Genetic Algorithms of MatLab.

The paper is structured in the following way. In Sect. 2 the new method is described and
some convergence results are presented. In Sect. 3 numerical experiences are presented in the
solution of some test problems and also in the solution of molecular conformation problems.
Finally, in Sect. 4 some final comments are included.

2 Hybrid spectral gradient method

This section describes the new method for the unconstrained minimization problem, denoted
by Hybrid Spectral Gradient (HSG) method. Section 2.1 shows the implementation of the
GAs in the resolution of the unconstrained minimization problem. In Sect. 2.2 the algorithm
of HSG method is presented. Finally, in Sect. 2.3 we prove some convergence results.

2.1 Genetic algorithm for unconstrained minimization

Initially the GA chooses randomly an initial population and then carries out a local search
to generate a new population through a process that emulates the natural selection, and the
operators such as crossover and mutation. A generation in a GA is the process of obtaining
a new population starting from a current population.

Each individual of the population represents a solution of the optimization problem and
it should be coded with symbols to be used in the GA. The individuals are coded through
a binary representation. Other representations are also used, such as the real representation
introduced by Wright [59]. To the effects of applying the GAs to the problem (1), a population
P is a finite subset of R

n given by

P = {y1, y2, . . . , yN } , (4)

where N is the population size and an individual yi = (y1
i , y2

i , . . . , yn
i)T is a point of R

n ,

where the coordinates y j
i are their genes for i = 1, . . . , n.

To select an individual of a population the GA needs to know their adaptation. According
to Davis [34] the adaptation function is the union between the GA and the considered prob-
lem. In the case of problem (1) the adaptation function is the same merit function. In other
words, for an individual yi of the population P given in (4) the value f (yi) is its adaptation.

The reproduction of new individuals considers the genetic operators that constitute, inside
a GA, the processes that simulate the genetic movements of the cellular division. The genetic
operators that are commonly used in the GAs are: crossover and mutation. For the problem
(1) we use the simple crossover. With the selection process (roulette wheel) two individuals
denoted parents are chosen. Then the crossing point is chosen, which is the coordinate where
the exchange of the segments of the parents will be carried out, and it is obtained generating
randomly an integer j in the set {1, 2, . . . , n − 1}. Then the segments are exchanged (before
and after the crossing point) of the parents. For example, if

x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T

123

196 J Glob Optim (2009) 44:193–212

are the parents and j is the crossing point, then the crossing of x with y generates two children
h1 and h2 given by

h1 = (x1, . . . , x j , y j+1, . . . , yn)T and h2 = (y1, . . . , y j , x j+1, . . . , xn)T .

We use as mutation operator to the Gaussian mutation (see James [44]). A children h =
(h1, . . . , hn)T is randomly selected. Then, a vector v = (v1, . . . , vn)T is randomly generated
such that vi follows a normal distribution with mean 0 and variance 1. Lastly, the Gaussian
mutation of h, denoted by hm , is defined as hm = h + ξv, where ξ > 0. In our numerical
experiences we use ξ = 0.5.

Commonly, at each generation of a GA the current population is replaced completely. This
leads to the frequent loss of the best individual of the population at each generation, that can
affect the efficiency of the GA. To overcome such difficulty, we use the elitism technique. The
elitism conserves the best individual of the current population at each generation, and so, if
the population size is N , then the new population is obtained creating N −1 new individuals,
and then adding the individual that possesses the best adaptation in the current population.

Algorithm 1 describes the evaluation and reproduction of a population of a GA.

Algorithm 1 (Genetic Algorithm)

Start: Choose randomly an initial population P0, an integer G > 0 and k = 0.
1: Evaluate each individual of Pk ;
2: repeat
3: reproduce Pk+1 starting from Pk ;
4: evaluate each individual of Pk+1;
5: k = k + 1;
6: until k = G.

Remark 1

(i) The stopping criteria of Algorithm 1 is the maximum number of generations given by
the integer G > 0.

(ii) The evaluation of the population Pk consists of computing the adaptation of each indi-
vidual of Pk .

(iii) The reproduction process consists of applying the genetics operators such as selection,
crossover and mutation, to the population Pk , for obtaining new individuals that con-
form the population Pk+1. As described before, the population Pk+1 conserves the best
individual of Pk .

2.2 The HSG algorithm

The HSG method combines the GAs with a global version of BB that is, in turn, obtained as a
combination of the BB method with a globalization strategy developed by La Cruz et al. [46]
and La Cruz [45].

Given x0 ∈ R
n , HSG first generates a sequence

zk = xk − λk∇ f (xk), for k = 0, 1, . . . (5)

that satisfies the condition

f (zk) ≤ f (xk) + ηk − γ λ2
k‖dk‖2, for k = 0, 1, . . . (6)

123

J Glob Optim (2009) 44:193–212 197

where ‖ · ‖ denotes the Euclidean norm, dk = −∇ f (xk), λk > 0, γ ∈ (0, 1) and {ηk} is a
fixed sequence of positive numbers such that

∞∑

k=0

ηk < η < ∞. (7)

Then, HSG randomly chooses a point wk ∈ R
n from a box in R

n with center in zk . For it, HSG
generates an initial population P0 of size N contained in a box in R

n with center in zk ; then the
GA given in Algorithm 1 obtains G generations. Subsequently the point wk ∈ R

n is chosen
as the best individual of the population PG . The box trust region, z = (z1, z2, . . . , zn)T ∈ P0,
is given by

|zi − zi
k | ≤ r, i = 1, 2, . . . , n, (8)

where r > 0.
If f (wk) ≤ f (zk), then HSG defines xk+1 = wk as an approximate solution of (1). On

the contrary, if f (wk) > f (zk) then HSG defines xk+1 as follows

xk+1 =
{

xk − (λk/2)∇ f (xk), if f (xk) < f (zk);
zk, if f (xk) ≥ f (zk).

The whole previous process is repeated until ‖∇ f (xk)‖ = 0 is satisfied for some k ≥ 1,
which guarantees that the iterate xk is a stationary point of f (x). Algorithm 2 below is a
formal description of the HSG method.

Algorithm 2 (Hybrid Spectral Gradient Method)

Start: Choose x0 ∈ R
n , α0 ∈ R, a positive sequence {ηk} that satisfies (7), γ ∈ (0, 1),

0 < σ1 < σ2 < 1, 0 < ε < 1, δ > 0, integers G > 0 and N > 0, r > 0 and k = 0.
1: repeat
2: if αk ≤ ε or αk ≥ 1/ε, let αk = δ;
3: let λ = 1/αk ;
4: while f (xk − λ∇ f (xk)) > f (xk) + ηk − γ λ2 ‖∇ f (xk)‖2 do
5: choose σ ∈ [σ1, σ2];
6: let λ = σλ;
7: end while
8: let λk = λ;
9: let zk = xk − λk∇ f (xk);

10: obtain G generations of Algorithm 1 with initial population P0 of size N that satisfies
(8);

11: let wk = minw∈PG [f (w)];
12: if f (wk) < f (zk) then
13: xk+1 = wk ;
14: else
15: if f (xk) < f (zk) then
16: let λk = λk/2;
17: let xk+1 = xk − λk∇ f (xk);
18: else
19: let xk+1 = zk ;
20: end if
21: end if
22: let yk = ∇ f (xk+1) − ∇ f (xk);

123

198 J Glob Optim (2009) 44:193–212

23: let αk+1 = − (∇ f (xk)
T yk

)
/
(
λk∇ f (xk)

T ∇ f (xk)
)
;

24: k = k + 1;
25: until ‖∇ f (xk)‖ = 0.

Remark 2

(i) Algorithm 2 is well defined. Indeed, by continuity of f and ηk > 0, the condition (6)
is satisfied after a finite number of reductions of λ.

(ii) The sequence {xk} generated by Algorithm 2 satisfies:

f (xk+1) ≤ f (xk) + ηk − γ λ2
k‖∇ f (xk)‖2, for all k ≥ 0. (9)

2.3 Convergence analysis

Next we present two technical results that describe some characteristics of the HSG method.
These results will allow us to demonstrate some convergence results.

The following proposition shows that the sequence {xk} generated by Algorithm 2 is
contained in a certain set.

Proposition 2.1 The sequence {xk} generated by Algorithm 2 is contained in the set

	0 = {
x ∈ R

n : f (x) ≤ f (x0) + η
}
.

Proof By (9) we can write for j ≥ 0:

f (x j+1) ≤ f (x j) + η j

f (x j+2) ≤ f (x j+1) + η j+1 ≤ f (x j) + η j + η j+1

f (x j+3) ≤ f (x j+2) + η j+2 ≤ f (x j) + η j + η j+1 + η j+2

...

Following with this inductive process we obtain:

f (x j+k) ≤ f (x j) +
j+k−1∑

i= j

ηi , for j ≥ 0, and k ≥ 1. (10)

By (7) and (10), f (xk) ≤ f (x0)+η, for k ≥ 1. In other words, the sequence {xk} is contained
in the set 	0. �	

Proposition 2.2 Assume that the set 	0 is compact and let {xk} be the sequence generated
by Algorithm 2. Then

lim
k→∞ λk‖∇ f (xk)‖ = 0. (11)

Proof By (9) we have

λ2
k‖∇ f (xk)‖2 ≤ ηk

γ
+ f (xk) − f (xk+1)

γ
, for all k ≥ 0. (12)

123

J Glob Optim (2009) 44:193–212 199

Since ηk satisfies (7), adding all terms both sides of (12) it follows that

∞∑

k=0

λ2
k‖∇ f (xk)‖2 ≤ 1

γ

(∞∑

k=0

ηk +
∞∑

k=0

(f (xk) − f (xk+1))

)

≤ 1

γ

(∣∣∣∣∣

∞∑

k=0

ηk

∣∣∣∣∣ +
∣∣∣∣∣

∞∑

k=0

(f (xk) − f (xk+1))

∣∣∣∣∣

)

≤ η + | f (x0)|
γ

< ∞. (13)

Since λk‖∇ f (xk)‖ ≥ 0, then by (13) equation (11) holds. �	
In Theorem 2.1 we prove that all limit points of the sequence {xk} generated by Algo-

rithm 2 are stationary points of f , in other words, the sequence {∇ f (xk)} converges to 0. In
this theorem it is assumed that 	0 is a compact set. Therefore, under this specific assumptions
Theorem 2.1 says that the HSG method always finds a stationary point of f .

Theorem 2.1 Assume that the set 	0 is compact and let {xk} be the sequence generated by
Algorithm 2. Then

lim
k→∞ ∇ f (xk) = 0. (14)

Proof Let x∗ be a limit point of {xk}. Without loss of generality we can assume that the
sequence {xk} converges to x∗. By Proposition 2.2 we have

lim
k→∞ λk‖∇ f (xk)‖ = 0.

This is true if

lim
k→∞ ‖∇ f (xk)‖ = 0

or if

lim inf
k→∞ λk = 0. (15)

If limk→∞ ‖∇ f (xk)‖ = 0, (14) holds. If (15) holds and ∇ f (x∗) �= 0, there exists an
infinite set of indices L such that

lim
k→∞,k∈L

λk = 0.

By the way λk was chosen in Algorithm 2, there exists an index k sufficiently large such that
for all k ≥ k, k ∈ L , there exists σk (σ1 ≤ σk ≤ σ2) for which λ = λk/σk fails to satisfy
condition (6), i.e.,

f (xk − (λk/σk)∇ f (xk)) > f (xk) + ηk − γ (λ2
k/σ

2
k)‖∇ f (xk)‖2

> f (xk) − γ (λ2
k/σ

2
k)‖∇ f (xk)‖2.

Therefore,

f (xk − (λk/σk)∇ f (xk)) − f (xk)

(λk/σk)
> −γ (λk/σk)‖∇ f (xk)‖2

> −γ (λk/σ1)‖∇ f (xk)‖2. (16)

123

200 J Glob Optim (2009) 44:193–212

Since dk = −∇ f (xk), by the Mean Value Theorem there is tk ∈ [0, λk/σk] that tends to zero
when k → ∞ such that

f (xk + (λk/σk)dk) − f (xk)

(λk/σk)
= ∇ f (xk + tkdk)

T dk,

in other words,

f (xk − (λk/σk)∇ f (xk)) − f (xk)

(λk/σk)
= −∇ f (xk − tk∇ f (xk))

T ∇ f (xk). (17)

By (16) and (17) we obtain, for all k ≥ k, k ∈ L ,

− ∇ f (xk − tk∇ f (xk))
T ∇ f (xk) > −γ (λk/σ1)‖∇ f (xk)‖2. (18)

Since (xk − tk∇ f (xk)) → x∗ as k → ∞ and k ∈ L , then taking limits in (18) as k → ∞,
k ∈ L , we deduce that

−∇ f (x∗)T ∇ f (x∗) ≥ 0.

This is true if and only if ∇ f (x∗) = 0. This completes the proof. �	

3 Numerical results

We compare the numerical behavior of the implementations in MatLab of the methods GBB
and HSG, and the function ga of the Toolbox of Genetic Algorithms of MatLab, for a set
of test functions (Appendix A) and the molecular conformation problem. All the runs were
carried out on a Pentium IV computer at 3.0 GHz with machine epsilon equal 2 × 10−6.

3.1 Implementation

For the function ga of the Toolbox of Genetic Algorithms of MatLab we use the option:

opts = optimset(’TolFun’,etol,’GradObj’,’on’,’LargeScale’,’on’),

options = gaoptimset(’PopulationSize’,50,’Generations’,500,...

’PopInitRange’, [
i ;
s],’HybridFcn’,{@fminunc, opts}),

where
i ≤ xi ≤
s , for all x = (x1, x2, . . . , xn) ∈ R
n , and choose etol = 10−3 for the test

problems and etol = 10−6 for the molecular conformation problem.
The functionga, with the selected options, is a hybrid GA that uses the functionfminunc

of the Toolbox of optimization of MatLab. The option selected withoptimset, allows to use
a large-scale algorithm and the analytic expression of the gradient in the function fminunc.
In this case, fminunc is a subspace trust region method which is based on the interior-
reflective Newton’s method described in [20,19]. Each iteration involves the approximate
solution of a large linear system using the preconditioned conjugate gradient method.

We implement the GBB method in MatLab with the parameters described in Raydan [54,
p. 30].

We implement the Algorithm 2 in MatLab with the following parameters:

• α0 = 1; ε = 10−10; γ = 10−4; σ1 = 0.1; σ2 = 0.5;

123

J Glob Optim (2009) 44:193–212 201

• δ > 0 define by

δ =

⎧
⎪⎨

⎪⎩

1, if ‖∇ f (xk)‖ > 1;

‖∇ f (xk)‖, if 10−5 ≤ ‖∇ f (xk)‖ ≤ 1;

10−5, if ‖∇ f (xk)‖ < 10−5;

• ηk = θρk , where θ > 0 and {ρk} is a sequence of positive numbers such that
∑∞

k=0 ρk <∞.
The parameters θ and ρk depend on the treated problem. For the test functions we set
ρk = (0.99)k and

θ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

| f (x0)|, if | f (x0)| ≤ 1;

5, if 1 < | f (x0)| ≤ 10;

10, if 10 < | f (x0)| ≤ 50;

50, if 50 < | f (x0)| ≤ 100;

100, if 100 < | f (x0)| ≤ 1000;

104, if | f (x0)| > 1000.

For the molecular conformation problem we set ρk = (0.9)k and θ = | f (x0)|.
• For the GA given in Algorithm 1, we define the probabilities of crossing (pc) and mutation

(pm) as:

pc =
⎧
⎨

⎩
0.8, if G = 1;
(

0.8
G−1

)
j + 0.1 for j = 1, 2, . . . , G − 1, if G ≥ 2;

pm =
⎧
⎨

⎩
0.39, if G = 1;
(

0.39
1−G

)
j + 0.4 for j = 1, 2, . . . , G − 1, if G ≥ 2.

To choose σ in Algorithm 2 we use the parabolic model described in [33, p. 127].
For the GBB method we use the stopping criterion

‖∇ f (xk)‖ ≤ etol, (19)

and for Algorithm 2 we use the stopping criterion given by the conditions (19) and

| f (xk) − f (xk−1)| ≤ f tol, (20)

where 0 < etol � 1 and f tol = 10−10.

3.2 Test functions

Initially we compare the algorithms GBB and HSG using Function 11 of the Appendix A
with n = 2. For the GA given in Algorithm 1 we set the population size N = 2, the number
of generations G = 3 and r = 5 to build the box given by (8).

The Function 11 with n = 2 is defined as f (x, y) = sin2(x2 + y2) + x2 + y2, whose
global minimum is x = (0, 0)T with f (x) = 0. This function possesses multiple stationary
points.

In Table 1 the numerical results of GBB and HSG are shown for 12 initial points x0. In
this table we report the number of function evaluations (FE), CPU time in seconds (T) and
the error

123

202 J Glob Optim (2009) 44:193–212

Table 1 Results of GBB and HSG for Function 11 with n = 2

x0 GBB HSG

FE T e FE T e

(0.5, 0.5)T 13 0.000 8.1e-8 65 0.016 1.1e-13
(1, 1)T 12 0.000 1.1e-7 85 0.031 1.7e-13
(10, 10)T 23 0.000 1.5e-7 185 0.047 1.3e-11
(50, 50)T 11 0.000 2.4e-8 213 0.047 6.4e-12
(100, 100)T 22 0.000 1.2e2 256 0.125 1.2e-14
(200, 200)T 26 0.016 5.9e1 142 0.063 4.1e-14
(−0.5,−0.5)T 13 0.000 8.1e-8 65 0.016 1.1e-13
(−1, −1)T 12 0.000 1.1e-7 92 0.016 1.1e-12
(−10, −10)T 23 0.000 1.5e-7 178 0.047 2.6e-12
(−50, −50)T 11 0.000 2.4e-8 149 0.031 3.0e-12
(−100, −100)T 22 0.000 1.2e2 87 0.031 5.6e-14
(−200, −200)T 26 0.000 5.9e1 114 0.031 1.1e-12

Fig. 1 Behavior of GBB and HSG for Function 11 and x0 = (100, 100)T

e = | f (x) − f (x)|, (21)

where f (x) is the value of the objective function at the global minimum x and f (x) is the
value of the objective function at the solution x found by the algorithm.

In Figs. 1 and 2 we observe the behavior of GBB and HSG for Function 11 with n = 2
and the initial iterates (100, 100)T and (200, 200)T , respectively. For these initial points, we
observe that GBB converges to a local minimum and HSG converges to the global minimum.

We also observe that HSG finds the global minimum x for each one of the initial iterates.
On the other hand, GBB finds the global minimum for almost all initial iterates, except for
the initial iterates (−100,−100)T , (−200,−200)T , (100, 100)T and (200, 200)T . We also

123

J Glob Optim (2009) 44:193–212 203

Fig. 2 Behavior of GBB and HSG for Function 11 and x0 = (200, 200)T

Table 2 Results of ga and HSG for Function 11 with n = 2

Interval ga HSG

FE T e FE T e

[−0.5, 0.5] 5698 0.242 8.70e-9 56 0.018 1.42e-12
[−1, 1] 5169 0.219 4.84e-9 77 0.028 2.22e-12
[−10, 10] 5137 0.222 1.10e-8 110 0.041 4.72e-12
[−50, 50] 5318 0.232 2.94e-1 155 0.047 5.23e-12
[−100, 100] 5333 0.233 8.85e-1 174 0.050 6.67e-12
[−200, 200] 5202 0.232 8.79e0 194 0.053 9.77e-12
[−500, 500] 5370 0.238 4.39e1 214 0.058 2.86e-2

observe that GBB spends significantly less CPU time than HSG, that is due to the fact that
the number of function evaluations of GBB is significantly smaller than those of HSG.

Now we compare the algorithms HSG and ga using Function 11 with n = 2. In Table 2
the numerical results of ga and HSG are shown for 7 search intervals. In this table we report
the average number of function evaluations, the average CPU time, and the average error e

given by (21), for 100 runs for each test function.
In this numerical experiment we observe that if the search interval is large, then the error

obtained by ga increases significantly. For example, for the search interval [−0.5, 0.5] ga
obtained the error e = 8.7e-9 and for the search interval [−500, 500] the error is e = 43.9.
We also observe that the CPU time and the number of function evaluations of HSG are sig-
nificantly smaller than those of ga. Also, the error obtained by HSG is mainly the same for
all search intervals, except for the interval [−500, 500] for which the error obtained by HSG
is e = 2.62e-2. This last error can be diminished taking f tol = 10−12 in (20). In this case
HSG obtains an error e = 4.96e-14 with an average of 0.063 seconds and 223 function
evaluations.

123

204 J Glob Optim (2009) 44:193–212

Table 3 Results of HSG and RSG for different values of N and G

N G HSG RSG GBB

FE T e FE T e FE T e

2 2 153 0.035 2.43e-11 177 0.005 2.08e3 55 0.007 1.16e3
2 5 333 0.090 2.73e-12 353 0.012 2.86e-1 53 0.006 7.25e1
2 10 500 0.183 3.92e-12 570 0.013 4.68e0 48 0.003 3.96e0
2 25 1491 0.968 3.41e-12 2684 0.059 7.43e-1 57 0.005 7.00e0
2 50 3160 3.554 3.04e-12 3382 0.075 6.00e-1 51 0.006 7.76e3
5 2 338 0.023 2.05e-11 499 0.016 1.86e0 58 0.005 9.94e0
5 5 779 0.053 2.07e-12 660 0.016 1.56e0 41 0.005 1.20e3
5 10 1613 0.119 1.09e-11 1916 0.044 5.47e0 52 0.002 1.50e0
5 25 5094 0.487 6.98e-11 2876 0.062 3.93e-12 51 0.003 5.88e0
5 50 7132 0.981 1.32e-11 9139 0.191 3.00e-1 56 0.005 6.67e0
10 2 587 0.039 4.01e-12 1241 0.030 3.24e0 55 0.003 3.26e1
10 5 1288 0.080 8.23e-12 1638 0.037 2.86e-1 62 0.006 3.55e1
10 10 3210 0.198 2.06e-11 7043 0.147 8.71e-1 49 0.000 7.87e3
10 25 7796 0.566 5.30e-11 6517 0.137 1.43e-1 71 0.003 6.21e1
10 50 15183 1.407 3.41e-11 15183 0.309 1.43e-1 45 0.002 6.09e1
25 2 1801 0.113 3.58e-11 1231 0.026 3.80e-12 61 0.005 2.92e2
25 5 4506 0.252 6.45e-11 3726 0.077 1.43e-1 53 0.003 1.33e2
25 10 6315 0.347 7.82e-12 10795 0.220 6.00e-1 67 0.005 4.96e0
25 25 38063 2.208 2.85e-10 14181 0.289 4.07e-12 60 0.002 1.92e1
25 50 48666 3.198 1.05e-10 25085 0.511 3.77e-12 55 0.005 2.27e3
50 2 3501 0.209 8.94e-11 3306 0.072 1.43e-1 57 0.004 1.41e2
50 5 6277 0.338 2.13e-11 6215 0.127 3.95e-12 49 0.004 2.86e1
50 10 17212 0.902 7.47e-11 11250 0.227 1.43e-1 65 0.005 1.34e0
50 25 32216 1.718 4.33e-11 28025 0.569 2.07e-12 52 0.004 8.93e3
50 50 72281 4.116 5.43e-11 53274 1.082 3.28e-12 52 0.006 4.98e0

Again we use Function 11 with n = 2 to see the efficacy of GA routine over the random
search within the box in the HSG method. We call the algorithm Random Spectral Gradient
(RSG) method which employs a simple random local search within a box trust region, instead
of GA part of Algorithm 2. This local search evaluates the objective function at some number
of randomly selected points in the box; for example, if N = 2 and G = 5, 10 points are
selected. We set [−500, 500] as the search interval.

Table 3 show the results of HSG, RSG and GBB, for 20 runs with each one of the values
of the population size and the number of generations. We report in this table the average
number of function evaluations, the average CPU time and the average error e given in
(21). In each run we consider an initial iterate x0 = (x1

0 , x2
0)T randomly generated such that

x1
0 , x2

0 ∈ [−500, 500].
We noticed that the population size and the number of generations affect the performance

of HSG. When the population size and the number of generations are large, the number of
function evaluations and the CPU time considerably increase. We also observe that solution
quality of HSG is practically the same for all cases. On the other hand, these numerical results
show that RSG and HSG possess similar CPU time and number of function evaluations, but
the solution quality of HSG is significantly better. This fact allows to justify the use of GA
as a local search scheme. We also observe that GBB not finds the global minimum in all the
runs.

Subsequently we compare the behavior of GBB, HSG, ga and RSG for all test functions.
In Tables 4 and 5 we report the average number of function evaluations, the average CPU
time and the average error e given in (21), for 20 runs for each test function, where the global

123

J Glob Optim (2009) 44:193–212 205

Table 4 Results of GBB and HSG for the test functions

Function (n) GBB HSG

FE T e fbest FE T e fbest

1(2) 463 0.019 8.3e-7 4.0e-1 820 0.204 3.6e-7 4.0e-1
2(2) 881 0.059 2.4e-4 −1.0e0 9332 2.141 3.4e-8 −1.0e0
3(2) 6380 0.170 5.3e1 3.0e0 11814 1.681 2.8e-11 3.0e0
4(2) 57 0.002 7.1e-1 4.7e-10 429 0.114 4.0e-1 9.0e-13
5(2) 116 0.003 7.2e-1 6.1e-8 423 0.120 1.2e-1 4.7e-8
6(2) 3733 0.158 8.8e-6 −1.9e2 5156 0.832 8.8e-6 −1.9e2
7(6) 968 0.096 4.2e-2 −3.3e0 3538 0.999 5.3e-1 −3.3e0
8(6) 11 0.000 3.0e-7 8.5e-8 137 0.058 3.9e-11 4.9e-12
9(5) 936 0.041 2.1e-7 1.0e-8 3260 0.652 1.3e-10 7.7e-17
9(10) 3730 0.163 2.0e-7 3.0e-11 10874 2.083 2.8e-9 6.7e-12
9(50) 328126 23.622 8.5e-4 3.2e-4 173746 29.286 3.4e-8 1.2e-16
10(5) 337 0.018 3.1e-7 7.8e-8 2071 0.459 3.0e-10 1.6e-10
10(10) 2177 0.177 3.3e-7 1.6e-7 14230 3.424 2.7e-10 2.2e-10
10(25) 3058 0.313 5.e-1 5.0e-1 350120 95.178 5.0e-1 5.0e-1
11(10) 72 0.009 5.6e0 2.7e-8 673 0.180 4.3e-1 8.6e-16
11(50) 128 0.012 2.8e1 7.0e-8 700 0.198 7.3e0 1.8e-14
11(100) 167 0.017 3.6e1 1.2e1 729 0.206 1.1e2 1.7e-12
12(100) 24 0.002 1.5e-7 1.0e2 186 0.062 4.1e-12 1.0e2
12(500) 25 0.004 1.5e-7 5.0e2 192 0.095 2.4e-12 5.0e2
12(1000) 24 0.003 1.4e-7 1.0e3 191 0.106 9.3e-13 1.0e3

Table 5 Results of ga and RSG for the test functions

Function (n) ga RSG

FE T e fbest FE T e fbest

1(2) 5488 0.183 3.8e-7 4.0e-1 913 0.023 3.6e-7 4.0e-1
2(2) 4584 0.155 2.6e-5 −1.0e0 131013 3.646 3.0e-6 −1.0e0
3(2) 5766 0.193 4.1e0 3.0e0 15363 0.330 5.0e1 3.0e0
4(2) 5260 0.177 1.1e-9 0.0e0 366 0.010 7.6e-1 2.6e-11
5(2) 4968 0.176 1.3e-7 4.7e-8 396 0.012 4.8e-1 4.7e-8
6(2) 5210 0.233 8.7e-6 −1.9e2 4567 0.158 3.2e0 −1.9e2
7(6) 10345 0.659 6.6e-2 −3.3e0 3202 0.172 2.0e-1 −3.3e0
8(6) 9245 0.413 2.1e-9 0.0e0 131 0.003 3.8e-11 5.2e-12
9(5) 12591 0.696 8.4e-5 2.3e-8 2895 0.102 7.9e-10 6.4e-17
9(10) 11332 0.645 1.9e-6 7.1e-10 7273 0.255 2.5e-9 7.6e-12
9(50) 6319 0.602 5.4e-7 2.5e-8 197996 9.655 5.0e-8 1.3e-15
10(5) 9259 0.431 7.0e-5 9.0e-6 1164 0.041 2.8e-10 2.1e-10
10(10) 12219 0.598 2.3e-1 2.3e-8 14421 0.489 2.5e-10 1.9e-10
10(25) 28386 1.366 6.3e-1 5.0e-1 350128 21.925 5.0e-1 5.0e-1
11(10) 14146 0.634 1.4e1 2.3e-10 276 0.014 3.3e1 3.1e-15
11(50) 34878 2.824 7.9e2 2.9e0 420 0.028 1.9e1 7.1e-14
11(100) 48149 6.594 7.1e3 6.0e0 528 0.061 7.2e0 3.9e-15
12(100) 47514 3.156 2.5e-4 1.0e2 203 0.009 1.0e-11 1.0e2
12(500) 13672 51.913 1.9e-4 5.0e2 203 0.036 4.1e-12 5.0e2
12(1000) 5897 436.094 6.0e-5 1.0e3 191 0.069 9.3e-13 1.0e3

minimum x of each test function is shown in Appendix A. We also report in these tables
the function number and dimension (Function(n)), and the smallest value in the objective
function (fbest) reached by the algorithm in the 20 runs. In each run we consider an initial
iterate x0 = (x1

0 , x2
0 , . . . , xn

0)T randomly generated such that x j
0 ∈ [
i ,
s], where the interval

[
i ,
s] is defined in Appendix A for each test function.

123

206 J Glob Optim (2009) 44:193–212

The numerical results of Tables 4 and 5 show that in general the error obtained by HSG is
significantly smaller than the errors of GBB and ga. We also observe that the CPU time and
the number of function evaluations of GBB are significantly smaller than those of HSG and
ga. When comparing HSG and gawe observe that the CPU time and the number of function
evaluations obtained by ga are bigger than those obtained by HSG. Also, for almost all the
problems, HSG obtained the smallest value in the objective function. When ga obtained a
better result, the difference among the best value in the objective function obtained by HSG
and the value obtained by ga is not significant.

3.3 Molecular conformation problem

Of agreement to Meza and Martinez [48]:

An important area of investigation in computational biochemical is the study of mol-
ecules for specific applications. Examples of such applications are: the development
of enzymes for the elimination of toxic garbages, the development of new catalysts
for the production of materials, and the study of new anti-cancerigenic agents. The
development of these substances depends on the exact determination of the structure
of the biological molecules. This problem is known as the molecular conformation
problem that consists of finding the configuration of a molecule whose free energy is
the lowest.
Under the assumption that the native structure of a molecule corresponds to a conforma-
tion for which the energy is at or near the global minimum, the molecular conformation
problem can be formulated as a problem of optimization. [48, pp. 627–628]

Next we describe the used model. In the same way in Meza and Martinez [48] we consider
a two-dimensional polymer that consists of K atoms connected by rigid sticks. A potential
E describing the energy of this system can be given by

E =
M∑

j=1

K∑

i= j+1

(
‖ai − a j‖2 − d2

i j

)2
, (22)

where ai = (xi , yi)T ∈ R
2 is the atom i with coordinates (xi , yi), di j is the known distance

of the atom i to the atom j , and 1 ≤ M ≤ K − 1. The integer M measures the number of
distances among known atoms, i.e., the distance of the first M atoms to all the other atoms.

Since ‖ai − a j‖2 = (xi − x j)2 + (yi − y j)2, the problem of finding the minimum of
E can be outlined as an unconstrained minimization problem of a function f : R

2K → R

defined as

f (x) =
M∑

j=1

K∑

i= j+1

(
(xi − x j)2 + (yi − y j)2 − d2

i j

)2
, (23)

where

x = (x1, x2, . . . , x K , y1, y2, . . . , yK)T ∈ R
2K .

It is easy to verify that (x1, x2, . . . , x K , y1, y2, . . . , yK)T ∈ R
2K solves the problem if

and only if f (x1, x2, . . . , x K , y1, y2, . . . , yK) = 0. Therefore, the structure of a molecule
can be determined finding the global minimum of f given by (23). The objective is to find
the position of each atom in the molecule satisfying all constraints imposed by the known

123

J Glob Optim (2009) 44:193–212 207

Molecule of 38 atoms Molecule of 60 atoms Molecule of 114 atoms

Fig. 3 Optimal conformation of the molecules of 38, 60 and 114 atoms

Table 6 Results of ga, GBB and HSG for the problems M38, M60 and M114

ga GBB HSG

M38 M60 M114 M38 M60 M114 M38 M60 M114

FE 25019 25021 25023 100034 100048 76968 6278 7213 7625
T 28.18 56.92 81.20 105.63 169.80 392.47 13.60 22.02 54.59
e 8.1e-10 1.3e-9 6.5e-10 4.9e-15 3.5e-12 2.3e-18 1.3e-15 5.4e-16 1.2e-16
fbest 2.2e-11 1.3e-11 9.6e-12 4.3e-15 1.5e-13 4.0e-19 1.3e-15 5.0e-16 1.2e-16

distance (i.e., that ‖ai − a j‖ = √
(xi − x j)2 + (yi − y j)2 = di j for i = 1, 2, . . . , M ,

j = 1, 2, . . . , K). For some reference, see [42].
We consider three problems: M38, M60 and M114 that consist of molecules of 38, 60

and 114 atoms, respectively, and whose optimal conformation is shown in Fig. 3. For each
run we randomly generate an initial iterate x0 such that x j

0 ∈ [−15, 15]. For the numerical
experiments we take M = 0.6K �. For the GA given in Algorithm 1 we set the population
size N = 2, the number of generations G = 3 and r = 5 to build the box given by (8).

In Table 6 we report the average number of function evaluations of f given in (23), the
average CPU time, the average error e = | f (x)| and the value of f at the best solution of
the algorithm, for each problem test, in 10 runs.

We observe that the CPU time and the number of function evaluations of HSG are signifi-
cantly smaller than those of GBB and ga. Practically, the errors are all the same regardless of
employed algorithms. Also, for all problems, GBB and HSG obtained the smallest value in
the objective function. The difference among the best value in the objective function obtained
by HSG and the value obtained by GBB is not significant.

4 Final remarks

We present a new method for unconstrained minimization denoted by Hybrid Spectral Gra-
dient (HSG) Method. The HSG method can be considered as a hybrid GA that combines
the method of Barzilai–Borwein with a GA. By its simplicity, the method is very easy to
implement, it requires a minimum of storage, and for that reason, it is very attractive for the
resolution of large-scale minimization problems (the code in MatLab written by the authors
is available upon request).

We compare the numerical behavior of the methods HSG, GBB and the function ga of
the Toolbox of Genetic Algorithms of MatLab, with a set of test functions and the molecular

123

208 J Glob Optim (2009) 44:193–212

conformation problem. Our preliminary results indicate that the new methodology finds the
global optimum more frequently than GBB and ga. For the test functions, the HSG method
obtained, on average, the best solution quality. On the other hand, we also observed that
all algorithms required a larger number of FEs and CPU times for the molecular conforma-
tion problem, but HSG obtained the best performance. The good behavior of HSG can be a
consequence of the combination of the methods GBB and GA.

In the numerical comparison of GBB with HSG using Function 11 of the Appendix A,
we noticed that HSG finds the global minimum for each initial iterate, and GBB converges
to a stationary point of the objective function when the initial iterate is not close enough to
the global minimum. This is because HSG combines the BB method with a GA to perform
a local search about the current point whenever the BB method generates a new iterate. The
incorporation of the GA can allow HSG to avoid the local minima and to converge to the
global minimum.

Now, when we compare ga with HSG using Function 11, we obtained that HSG finds the
global minimum for each search interval, and ga does not find the global minimum if the
search interval is large. Since ga is a global search algorithm, the size of the search space
affects their performance. On the other hand, since HSG requires only an initial iterate, the
size of the search space does not affect its performance. What affects their performance is
the location of the initial iterate with regard to the global optimum.

We numerically verify that the population size and the number of generations of GA can
affect the performance of HSG. When the population size and the number of generations are
large, the number of function evaluations and the CPU time increase, but the solution quality
can be practically the same.

Lastly, an investigation topic that arises as a consequence of the present work, is the devel-
opment of a derivative-free version of HSG, in other words, to design a new approach of HSG
that does not use the gradient of f as search direction. The models without differentiability
are in general very difficult to solve, although they are of great relevance in science and
engineering.

Acknowledgements We are grateful to Marcos Raydan for many suggestions which greatly improved the
quality and presentation of this paper. We are also indebted to two anonymous referees for valuable comments
and suggestions. This work was supported by CDCH-UCV project PI-08-14-5463-2006.

A List of test functions

A.1 Branin RCOS function

• Definition: f (x1, x2) = (x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6)2 + 10(1 − 1
8π

) cos(x1) + 10.
• Range of initial points [
i ,
s]: xi ∈ [−5, 15], i = 1, 2.
• Number of local minima: no local minima.
• Global minima: x = (−π, 12.275), (π, 2.275), (9.42478, 2.475); f (x) = 0.397887.

A.2 Easom function

• Definition: f (x1, x2) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2).
• Range of initial points [
i ,
s]: xi ∈ [−10, 10], i = 1, 2.
• Number of local minima: several local minima.
• Global minima: x = (π, π); f (x) = −1.

123

J Glob Optim (2009) 44:193–212 209

A.3 Goldstein and Price function

• Definition: f (x1, x2) = (1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))

(30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)).

• Range of initial points [
i ,
s]: xi ∈ [−2, 2], i = 1, 2.
• Number of local minima: 4 local minima.
• Global minima: x = (0,−1); f (x) = 3.

A.4 Rastrigin function

• Definition: f (x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7.
• Range of initial points [
i ,
s]: xi ∈ [−1, 1], i = 1, 2.
• Number of local minima: many local minima.
• Global minima: x = (0, 0); f (x) = 0.

A.5 Hump function

• Definition: f (x1, x2) = 1.0316285 + 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 .
• Range of initial points [
i ,
s]: xi ∈ [−5, 5], i = 1, 2.
• Number of local minima: no local minima.
• Global minima: x = (0.0898,−0.7126), (−0.0898, 0.7126); f (x) = 0.

A.6 Shubert function

• Definition: f (x1, x2) =
(∑5

j=1 j cos((j + 1)x1 + j)
) (∑5

j=1 j cos((j + 1)x2 + j)
)

.

• Range of initial points [
i ,
s]: xi ∈ [−10, 10], i = 1, 2.
• Number of local minima: 760 local minima.
• Global minima: 18 global minima and f (x) = −186.7309.

A.7 Hartmann function (H6,4)

• Definition: f (x) = −∑4
i=1 ci exp

[
−∑6

j=1 ai j (x j − pi j)
2
]
.

i ai j ci

1 10.0 3.0 17.0 3.50 1.70 8.0 1.0
2 0.05 10.0 17.0 0.10 8.0 14.0 1.2
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2

i pi j

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

• Range of initial points [
i ,
s]: xi ∈ [0, 1], i = 1, . . . , 6.
• Number of local minima: 6 local minima.
• Global minima: x = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300)

and f (x) = −3.32237.

123

210 J Glob Optim (2009) 44:193–212

A.8 Griewank function

• Definition: f (x) = ∑6
j=1

x2
j

4000 − ∏6
j=1 cos(x j/

√
j) + 1.

• Range of initial points [
i ,
s]: xi ∈ [−1, 1], i = 1, . . . , 6.
• Number of local minima: many local minima.
• Global minima: x = 0 and f (x) = 0.

A.9 Zakharov function

• Definition: f (x) = ∑n
j=1 x2

j +
(∑n

j=1 0.5 j x j

)2 +
(∑n

j=1 0.5 j x j

)4
.

• Range of initial points [
i ,
s]: xi ∈ [−5, 10], i = 1, . . . , n.
• Number of local minima: no local minima.
• Global minima: x = 0 and f (x) = 0.

A.10 Dixon function

• Definition: f (x) = (1 − x1)
2 + (1 − x10)

2 + ∑9
j=1(x2

i − xi+1)
2.

• Range of initial points [
i ,
s]: xi ∈ [−5, 10], i = 1, . . . , n.
• Number of local minima: no local minima.
• Global minima: x = (1, 1, . . . , 1) and f (x) = 0.

A.11 Function 11

• Definition: f (x) = ∑m
j=1

[
sin2(x2

2 j−1 + x2
2 j) + (x2

2 j−1 + x2
2 j)

]
, where m = n/2 and

n > 0 is an even integer.
• Range of initial points [
i ,
s]: xi ∈ [−50, 50], i = 1, . . . , n.
• Number of local minima: several local minima.
• Global minima: x = 0 and f (x) = 0.

A.12 Strictly Convex function

• Definition: f (x) = ∑n
j=1

[
exp(x j) − x j

]
.

• Range of initial points [
i ,
s]: xi ∈ [−3, 3], i = 1, . . . , n.
• Number of local minima: no local minima.
• Global minima: x = 0 and f (x) = n.

References

1. Azofeifa, D., Clark, N., Vargas, W.: Optical and electrical properties of terbium films as a function of
hydrogen concentration. Phys. Stat. B – Basic Solid State Phys. 242, 2005–2009 (2005)

2. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
3. Bellavia, S., Morini, B.: A globally convergent Newton-GMRES subspace method for systems of non-

linear equations. SIAM J. Sci. Comput. 23, 940–960 (2001)
4. Bello, L., Raydan, M.: Convex constrained optimization for the seismic reflection tomography prob-

lem. J. Appl. Geophys. 62, 158–166 (2007)
5. Bielschowsky, R.H., Friedlander, A., Gomes, F.A., Martínez, J.M., Raydan, M.: An adaptive algorithm

for bound constrained quadratic minimization. Invest. Oper. 7, 67–102 (1997)
6. Birgin, E.G., Chambouleyron, I., Martínez, J.M.: Estimation of the optical constants and the thickness

of thin films using unconstrained optimization. J. Comput. Phys. 151, 862–880 (1999)

123

J Glob Optim (2009) 44:193–212 211

7. Birgin, E.G., Chambouleyron, I., Martínez, J.M.: Optimization problems in the estimation of parameters
of thin films and the elimination of the influence of the substrate. J. Comput. Appl. Math. 152, 35–
50 (2003)

8. Birgin, E.G., Evtushenko, Y.G.: Automatic differentiation and spectral projected gradient methods for
optimal control problems. Optim. Methods Softw. 10, 125–146 (1998)

9. Birgin, E.G., Martínez, J.M., Mascarenhas, W.F., Ronconi, D.P.: Method of sentinels for packing items
within arbitrary convex regions. J. Oper. Res. Soc. 57, 735–746 (2006)

10. Birgin, E.G., Martínez, J.M., Nishihara, F.H., Ronconi, D.P.: Orthogonal packing of rectangular items
within arbitrary convex regions by nonlinear optimization. Comput. Oper. Res. 33, 3535–3548 (2006)

11. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex
sets. SIAM J. Optim. 10, 1196–1211 (2000)

12. Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG—software for convex-constrained opti-
mization. ACM Trans. Math. Softw. 27, 340–349 (2001)

13. Birgin, E.G., Martínez, J.M., Raydan, M.: Inexact spectral projected gradient methods on convex
sets. IMA J. Numer. Anal. 23, 539–559 (2003)

14. Birgin, E.G., Martínez, J.M., Ronconi, D.P.: Minimization subproblems and heuristics for an applied
clustering problem. Eur. J. Oper. Res. 146, 19–34 (2003)

15. Birgin, E.G., Martínez, J.M., Ronconi, D.P.: Optimizing the packing of cylinders into a rectangular
container: a nonlinear approach. Eur. J. Oper. Res. 160, 19–33 (2005)

16. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Com-
put. 11, 450–481 (1990)

17. Brown, P.N., Saad, Y.: Convergence theory of nonlinear Newton–Krylov algorithms. SIAM J. Op-
tim. 4, 297–330 (1994)

18. Castillo, Z., Cores, D., Raydan, M.: Low cost optimization techniques for solving the nonlinear seismic
reflection tomography problem. Optim. Eng. 1, 155–169 (2000)

19. Coleman, T.F., Li, Y.: On the convergence of interior-reflective Newton methods for nonlinear minimi-
zation subject to bounds. Math. Program. 67, 189–224 (1994)

20. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to
bounds. SIAM J. Optim. 6, 418–445 (1996)

21. Cores, D., Fung, G.M., Michelena, R.J.: A fast and global tow point low storage optimization technique
for tracing rays in 2D and 3D isotropic media. J. Appl. Geophys. 45, 273–287 (2000)

22. Cores, D., Loreto, M.: A generalized two point ellipsoidal anisotropic ray tracing for converted
waves. Optim. Eng. 8, 373–396 (2007)

23. Curiel, F., Vargas, W.E., Barrera, R.G.: Visible spectral dependence of the scattering and absorption
coefficients of pigmented coatings from inversion of diffuse reflectance spectral. Appl. Opt. 41, 5969–
5978 (2002)

24. Dai, Y.H.: On the nonmonotone line search. J. Optim. Theory Appl. 112, 315–330 (2002)
25. Dai, Y.H.: Alternate step gradient method. Optimization 52, 395–415 (2003)
26. Dai, Y.H., Fletcher, R.: On the asymptotic behaviour of same new gradient methods. Math. Pro-

gram. 103, 541–559 (2005)
27. Dai, Y.H., Fletcher, R.: Project Barzilai–Borwein methods for large-scale box-constrained quadratic

programming. Numerische Mathematik 100, 21–47 (2005)
28. Dai, Y.H., Hager, W., Schittkowski, K., Zhang, H.C.: The cyclic Barzilai–Borwein method for uncon-

strained optimization. IMA J. Numer. Anal. 26, 604–627 (2006)
29. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer.

Anal. 22, 1–10 (2002)
30. Dai, Y.H., Yuan, J.Y., Yuan, Y.X.: Modified two-point stepsize gradient methods for unconstrained opti-

mization. Comput. Optim. Appl. 22, 103–109 (2002)
31. Dai, Y.H., Zhang, H.C.: Adaptive two-point stepsize gradient algorithm. Numer. Algorithms 27, 377–

385 (2001)
32. Deidda, G.P., Bonomi, E., Manzi, C.: Inversion of electrical conductivity data with tikhonov regulariza-

tion approach: some considerations. Ann. Geophys. 46, 549–558 (2003)
33. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equa-

tions. Prentice-Hall, Englewoog Cliffs (1983)
34. Davis, L.: The Handbook of Genetic Algorithms. Van Nostrand Reingold, New York (1991)
35. Fletcher, R.: Low storage methods for unconstrained optimization. Lectures in Applied Mathematics

(AMS) 26, 165–179 (1990)
36. Fletcher, R.: On the Barzilai–Borwein method. Appl. Optim. 96, 235–236 (2006)
37. Francisco, J.B., Martínez, J.M., Martínez, L.: Density-based globally convergent trust-region methods

for self-consistent field electronic structure calculations. J. Math. Chem. 40, 349–377 (2006)

123

212 J Glob Optim (2009) 44:193–212

38. Friedlander, A., Martínez, J.M., Molina, B., Raydan, M.: Gradient method with retards and generaliza-
tions. SIAM J. Numer. Anal. 36, 275–289 (1999)

39. Friedlander, A., Martínez, J.M., Raydan, M.: A new method for large-scale constrained convex quadratic
minimization problems. Optim. Methods Softw. 5, 57–74 (1995)

40. Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformation from distance matrices. J. Comput.
Chem. 14, 114–120 (1993)

41. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wes-
ley, Readomg (1989)

42. Hendrickson, B.A.: The molecule problem: exploiting structure in global optimization. SIAM J. Op-
tim. 5, 835–857 (1995)

43. Holland, J.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann
Arbor (1975)

44. James, C.S.: Introduction to Stochastics Search and Optimization. Wiley-Interscience, New Jersey (2003)
45. La Cruz, W.: Derivative-free residual algorithm for solving weakly nonlinear equations. IMA J. Numer.

Anal. (2007), Submitted
46. La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for

solving large-scale nonlinear systems of equations. Math. Comput. 75, 1449–1466 (2006)
47. La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim.

Methods Softw. 18, 583–599 (2003)
48. Meza, J.C., Martinez, M.L.: On the use of direct search methods for the molecular conformation problem.

J. Comput. Chem. 15, 627–632 (1994)
49. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. AI Series. Springer-

Verlag, New York (1994)
50. Molina, B., Raydan, M.: Preconditioned Barzilai–Borwein method for the numerical solution of partial

differential equations. Numer. Algorithms 13, 45–60 (1996)
51. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
52. Ramirez-Porras, A., Vargas-Castro, E.: Transmission of visible light through oxidized copper films:

feasibility of using a spectral projected gradient method. Appl. Opt. 43, 1508–1514 (2004)
53. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer.

Anal. 13, 321–326 (1993)
54. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization

problem. SIAM J. Optim. 7, 26–33 (1997)
55. Serafini, T., Zanghirati, G., Zanni, T.: Gradient projection methods for quadratic programs and applica-

tions in training support vector machines. Optim. Methods Softw. 20, 353–378 (2005)
56. Vargas, W.E.: Inversion methods from Kubelka–Munk analysis. J. Opt. A - Pure Appl. Opt. 4, 452–

456 (2002)
57. Vargas, W.E., Azofeifa, D.E., Clark, N.: Retrieved optical properties of thin films on absorbing sub-

strates from transmittance measurements by application of a spectral projected gradient method. Thin
Solid Films 425, 1–8 (2003)

58. Wells, C., Glunt, W., Hayden, T.L.: Searching conformational space with the spectral distance geometry
algorithm. J. Mol. Struct. (Theochem) 308, 263–271 (1994)

59. Wright A.H.: Genetic algorithms for real parameter optimization. In: Rawlins J.E. (ed.) Foundations of
Genetic Algorithms, pp. 205–218. Morgan Kaufmann (1991)

60. Zeev, N., Savasta, O., Cores, D.: Non-monotone spectral projected gradient method applied to full
waveform inversion. Geophys. Prospect. 54, 525–534 (2006)

61. Zhina, J.: Applications of conditional nonlinear optimal perturbation to the study of the stability and
sensitivity of the Jovian atmosphere. Adv. Atmos. Sci. 23, 775–783 (2006)

123

	Hybrid spectral gradient method for the unconstrained minimization problem
	Abstract
	1 Introduction
	2 Hybrid spectral gradient method
	2.1 Genetic algorithm for unconstrained minimization
	2.2 The HSG algorithm
	2.3 Convergence analysis

	3 Numerical results
	3.1 Implementation
	3.2 Test functions
	3.3 Molecular conformation problem

	4 Final remarks
	Acknowledgements
	A List of test functions
	A.1 Branin RCOS function
	A.2 Easom function
	A.3 Goldstein and Price function
	A.4 Rastrigin function
	A.5 Hump function
	A.6 Shubert function
	A.7 Hartmann function (H6,4)
	A.8 Griewank function
	A.9 Zakharov function
	A.10 Dixon function
	A.11 Function 11
	A.12 Strictly Convex function

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

